Part III: Hardy-Weinberg Problems

Remember:

p = dominant allele / q = recessive allele $p^2 = \text{homozygous dominant individuals}$ 2pq = heterozygous individuals $q^2 = \text{homozygous recessive individuals}$ $p^2 + 2pq + q^2 = 1$ p + q = 1

- 1. Let's say that brown fur coloring is dominant to gray fur coloring in mice. If you have 168 brown mice in a population of 200 mice then . . .
 - **a.** What is the predicted <u>frequency</u> of heterozygotes? 2pq = 2(0.6)(0.4) = 0.48
 - **b.** What is the predicted <u>frequency</u> of homozygous dominant? $\mathbf{p}^2 = (0.6)^2 = 0.36$
 - c. What is the predicted <u>frequency</u> of homozygous recessive $q^2 = (0.4)^2 = 0.16$

$$q = 0.4$$
 $p = 0.6$

- 2. The allele for the hair pattern called "widow's peak" is dominant over the allele for no "widow's peak". In a population of 1,000 individuals, 510 show the dominant phenotype. <u>How many individuals</u> would you expect of each of the possible three genotypes for this trait?
 - q = 0.7p = 0.3Homozygous Dominant: $p^2 = (0.3)^2 = 0.09 \ge 100 = 90$ individualsHeterozygous: $2pq = 2(0.3)(0.7) = 0.42 \ge 100 = 420$ individualsHomozygousRecessive: $q^2 = (0.7)^2 = 0.49 \ge 100 = 490$ individuals
- **3.** In the United States about 16% of the population is Rh negative. The allele for Rh negative is recessive to the allele for Rh positive. If the student population of a high school in the U.S. is 2,000, how many students would you expect for each of these three possible genotypes?

q = 0.4p = 0.6Homozygous Dominant: $p^2 = (0.6)^2 = 0.36 \ge 2000 = 720$ individualsHeterozygous: $2pq = 2(0.6)(0.4) = 0.48 \ge 2000 = 960$ individualsHomozygousRecessive: $q^2 = (0.4)^2 = 0.16 \ge 2000 = 320$ individuals

4. In certain African countries 4% of the newborn babies have sickle cell anemia, which is a recessive trait. Out of a random population of 1,000 newborn babies, <u>how many</u> would you expect for <u>each of the three possible genotypes</u>?

q = 0.2p = 0.8Homozygous Dominant: $p^2 = (0.8)^2 = 0.64 \ge 1000 = 640$ individualsHeterozygous: $2pq = 2(0.8)(0.2) = 0.32 \ge 1000 = 320$ individualsHomozygousRecessive: $q^2 = (0.2)^2 = 0.04 \ge 1000 = 40$ individuals

5. In a certain population, the dominant phenotype of a certain trait occurs 91% of the time. What is the frequency of the dominant allele?

```
p = 0.7
```

6. A very large population of randomly-mating laboratory mice contains 25% white mice. White coloring is caused by the double recessive genotype, "aa". Calculate <u>allelic</u> and <u>genotypic frequencies</u> for this population.

Allelic Frequencies		Genotypic Frequencies	
q = 0.5	p = 0.5	Homozygous Dominant: $p^2 = (0.5)^2 = 0.25$	
		Heterozygous: $2pq = 2(0.5)(0.5) = 0.50$	
		Homozygous Recessive: $q^2 = (0.5)^2 = 0.25$	

7. In Drosophila (fruit fly), the allele for normal wing length is dominant over the allele for short wings. In a population of 1000 individuals, 360 show the recessive phenotype. <u>How many individuals</u> would you expect to be <u>homozygous dominant</u> for the trait.

q = 0.6 p = 0.4 Homozygous Dominant: $p^2 = (0.4)^2 = 0.16 \times 1000 = 160$ individuals

8. The allele for a widow's peak (hairline) is dominant over the allele for a straight hairline. In a population of 500 individuals, 9% show the recessive phenotype. <u>How many individuals</u> would you expect to be <u>homozyous dominant and heterozygous</u> for the trait?

q = 0.3p = 0.7Homozygous Dominant: $p^2 = (0.7)^2 = 0.49 \ge 500 = 245$ individualsHeterozygous: $2pq = 2(0.7)(0.3) = 0.42 \ge 500 = 210$ individuals

9. In a given population, only the "A" and "B" alleles are present in the ABO system; there are no individuals with type "O" blood or with O alleles in this particular population. If 200 people have type A blood, 75 have type AB blood, and 25 have type B blood, what are the <u>alleleic frequencies</u> of this population?

	Frequency of A allele	Frequency of B allele	
200 AA - Homozygous	(200 x 2) + (75 x 1)	$(25 \ge 2) + (75 \ge 1)$	
75 AB – Heterozygous	600	600	
+25 BB - Homozygous			
300	<u>475</u>	<u>125</u>	
<u>x 2</u>	600	600	
600 alleles			
	0.792 = 0.8	0.208 = 0.2	

10. In Mr. Collea's AP Biology class at North Salem High School, _____ members of the class have free earlobes. Free earlobes are controlled by the dominant gene "F" and attached earlobes are controlled by the recessive gene "f." Determine the **allelic frequencies** (p and q) along with the **number of individuals** you would expect to have each of the possible three genotypes for this trait?

		Phe	Allele Frequency Based on the H-W Equation			
		arlobes - 2pq)	Attached Earlobes (q2)		р	q
Class Population	#	%	#	%		
North American Population	0.45		0.55			

Attached Earlobes