
I. GENETIC ENGINEERING

. THE ALTERING OF AN ORGANISMS DNA

A. How did we get here?

- 1. 4000 BC: Ancient Egyptian agriculturists would use selective breeding techniques to increase the productions of various crops.
- 2. 1860: Gregor Mendel cultivated and tested some 28,000 pea plants to develop his various Laws of Heredity.
- 3. 1902: WALTER SUTTON linked chromosomes with Mendel's Laws
- 4. 1909: The term "GENE" is introduced.
- 5. 1928: GRIFFITH and his experiments with BACTERIA determine that heredity material of CHROMOSOMES is DNA
- 6. 1953: WATSON and CRICK propose their Double HELIX structure of DNA.
- 7. 1977: The first human hormone (protein) was made in a bacterial cell.
- 8. 1990: Human Genome Project begins.
- 9. 1994: Breast cancer gene identified and located on *chromosome 17*.
- 10. 2001: The entire human genome is sequenced. Human Genome Project continues.

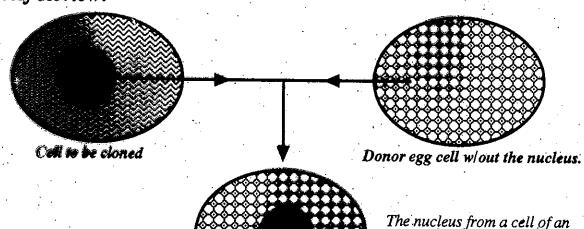
B. Selective Breeding

- By selecting the most productive plants or animals to produce the next generation, peop! have found that the productivity of a domesticated species can gradually increase.
- DESIGNABLE TRAITS FOR MATING

C. Inbreeding (Fig. 27-9)

OBTAIN DESIRED CHANACTERISTICS.

Inbreeding MCASASS the genetic variation in a population and thus

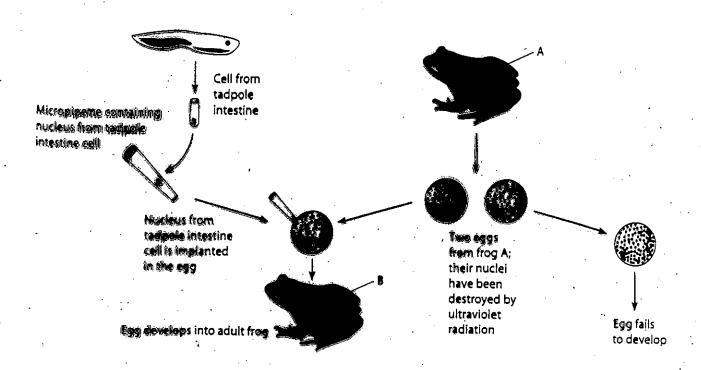

INCASASS the number of Homozygous genes. Since many
genetic disorders are RECESSIVE, inbreeding can INCAEASE

the likelihood of these disorders occurring and can result in unwanted effects.

D. Cloning

. THE PRODUCTION OF GENETICALLY IDENTICAL CHEANISMS

A Brief Review:


The Living Environment

Genetic Engineering: Class Notes

organism to be cloned is removed and placed into the egg cell whose haploid nucleus is already removed.

Cloning (continued)

• Many of the earlier experiments done on cloning were done using frogs.

Possible benefits of cloning include:

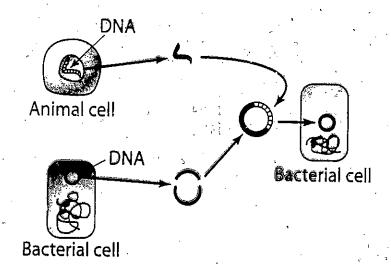
(1) _			
(2) _		•	
(3)			· ·

HOWEVER,

Just because we CAN...does it mean we SHOULD?????

4

E. Gene Splicing (Fig. 27-13)


- . To theuseer Genes from one oneavism to
- STEPS TO GENE SPLICING
- (1) Identify the location of the desired gene in the human <u>GENONE</u>.

 (ALL of the DNA in a human cell)

HUMAN GENOME PROJECT

- (2) <u>Cut</u> the DNA containing the desired gene to be spliced into small pieces using <u>RESTRICTION</u> ENLYMES
- (3) INSERT the desired gene into a small ring of bacterial DNA called a PLASM ID found in Escherichia cali (E. coli).
- (4) <u>CLONE</u> the organism (bacteria) containing the desired gene.

RESULT: Once in the new organism, the RECOMBINAT DNA directs the new organism's cells to make the same PROTEIN as the original organism.

II. THE HUMAN GENOME PROJECT

THE 25.000 GENES THAT MAKE UP A HUMAN.

STARTED: 1990

A. COMPARATIVE SCALE OF MAPPING

B. PROS AND CONS OF THE HUMAN GENOME PROJECT.

PROS (+)

- (1) Diagnosis and prediction of diseases.

 Ex: Breast Cancer (chromosome 17)
- (2) Insights into basic biology.
- (3) Development of new drug therapies and technologies.

CONS(-)

- (1) Genetic Discrimination.
- (2) Whose DNA is it anyway?
- (3) Reproductive decision making.