Honors Biology

North Salem High School

MISSION: Engage students to continuously learn, question, define and solve problems through critical and creative thinking.

Class Notes

Cell Transport

(The structure and functions of the cell membrane.)

This note packet covers the structure and function of the organelle mainly responsible for maintaining HOMEOSTASIS in the cell; the cell membrane. We will take a close look at the structure and many functions of the cell membrane along with the various ways materials get into and out of a cell.

Let's get to work!

If you have any problems – please sign up for extra help after school.

Collea Room W-19

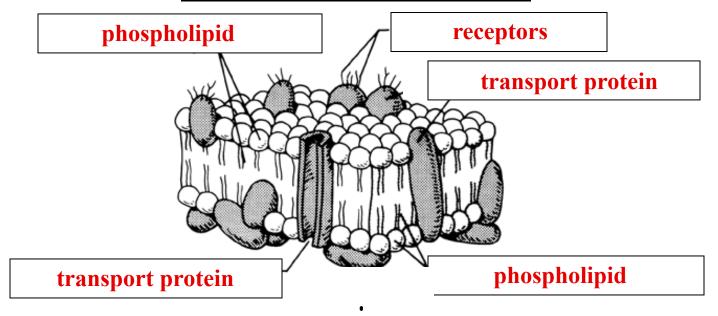
Key Words:

cell membrane homeostasis fluid-mosaic model passive transport diffusion osmosis active transport endocytosis exocytosis pinocytosis monosaccharide phagocytosis polysaccharide glucose starch plasmolysis Lugol's solution receptors Benedict's solution contractile vacuole

Objectives:

laboratory.

1.	Name the model used to represent the structure of the <i>cell membrane</i> .
1.	Describe the structure of the cell membrane.
2.	List and describe the 3 main functions of the cell membrane.
3.	Describe two specific examples of cell-to-cell communication.
5.	List 3 factors that affect movement of materials into and out of cells.
	Define concentration gradient.
	Define semipermeable.
	Define and give two examples of <i>passive transport</i> .
	Define and describe the difference between <i>diffusion</i> and <i>osmosis</i> .
	State one example of diffusion in the human body.
	Define active transport.
	Explain why a <i>contractile vacuole</i> is necessary for a paramecium to maintain homeostasis.
	State two differences between <i>passive</i> and <i>active transport</i> .
14.	Define and describe the differences between <i>endocytosis</i> and <i>exocytosis</i> .
15.	State the main difference between <i>pinocytosis</i> and <i>phagocytosis</i> .
16.	Describe two examples of <i>phagocytosis</i> .
-	
<u>Lab Objectives</u> :	
17.	Define plasmolysis. Red Blood Cells
18.	Describe and explain the effects salt water has on red onion cells.
19.	State the difference between a monosaccharide (glucose) and polysaccharide (starch).
	Predict the diffusion of various molecules in different model membrane systems.
21.	Explain the function of chemical indicators in a biology laboratory
22.	Describe how Eugol's solution (iodine) is used to detect the presence of starch. Describe how Denedict's solution is used to detect the presence of glucose.
23.	Describe how Denedict's solution is used to detect the presence of always.
24	


I. The Plasma Membrane

- The key structure that is involved with the *maintenance of a constant environment* or **homeostasis** within a cell and its organelles is the **cell membrane**
- The function of the cell membrane is to **__control** what enters and leaves the cell.
- Because not all substances or molecules can easily go into and out of the cell, the cell membrane is __semipermeable __or __selectively permeable

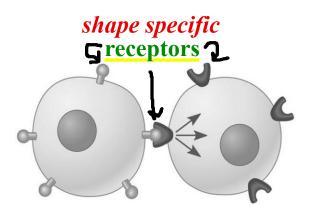
A. Structure of the Cell Membrane

The model used to describe the structure of the cell membrane is called the fluid - mosaic model.

Fluid Mosaic Model of the Cell Membrane:

- Fluid because the double lipid layer is continually moving. A chemical compound called **cholesterol** helps keeps the cell membrane nice and flexible.
- Mosaic because that is how it appears from the outside. A mosaic is a piece of art that is made up of lots a little pieces.

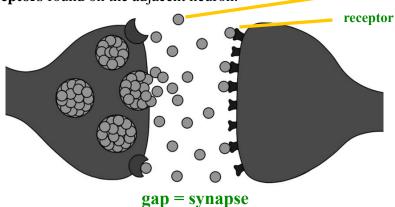
"Protein icebergs floating in a sea of lipids"

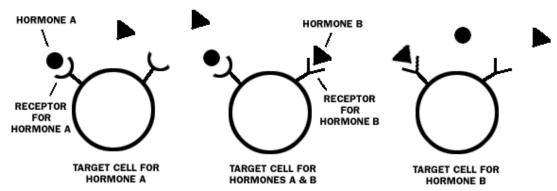

B. Functions of the Cell Membrane

1.

2.

Cell to Cell communication


(a) Two IMMUNNE cells in an animal may communicate **DIRECTLY** by the interactions between molecules protruding from their cell membranes.

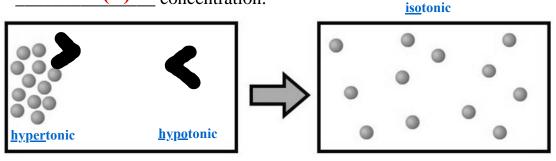

Chemical to Cell communication

(Video)

(a) Two NERVE cells (*neurons*) may communicate **INDIRECTLY** by the use of special proteins called NEUROTRANSMITTERS that cross the gap (*synapse*) between two nerve cells and are detected by the **receptors** found on the adjacent neuron.

(b) Endocrine glands secrete *chemical messengers* called _____ **hormones**___ that are detected by the cells of our body because of the specifically shapes **receptors** on their cell membranes.

"You can't fit a square peg in a round hole."


3. Maintains a stable internal environment (homeostasis) by controlling what goes in and out of the cell.

II. How materials move into and out of cells?

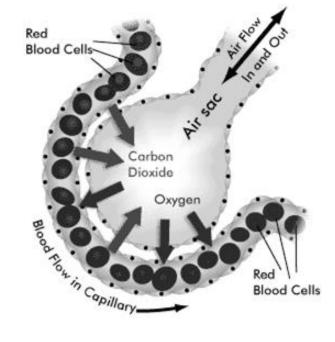
A. Passive Transport

• The natural movement of molecules from a **greater** (>) concentration to a **lesser** (<)

1. Types of Passive Transport

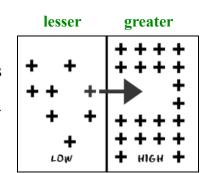
equilibrium

- (a) diffusion
- (b) <u>osmosis</u> The diffusion of <u>water</u>.

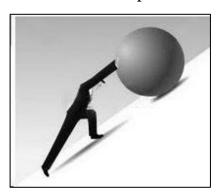

All osmosis is diffusion BUT not all diffusion is osmosis.

2. Example of Diffusion in the Human Body. (Video)

The diffusion of **Oxygen** from the lungs into the bloodstream.


The diffusion of <u>carbon dioxide</u> from the bloodstream into the lungs

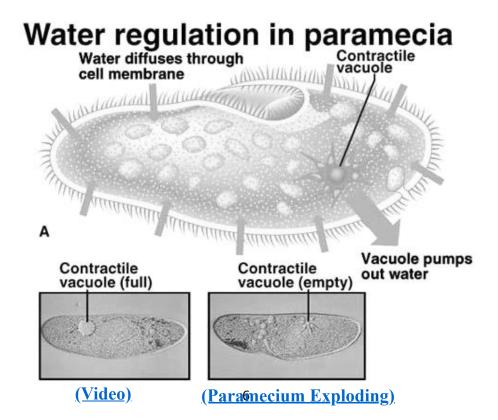
(Human Respiratory System - Gas Exchange)



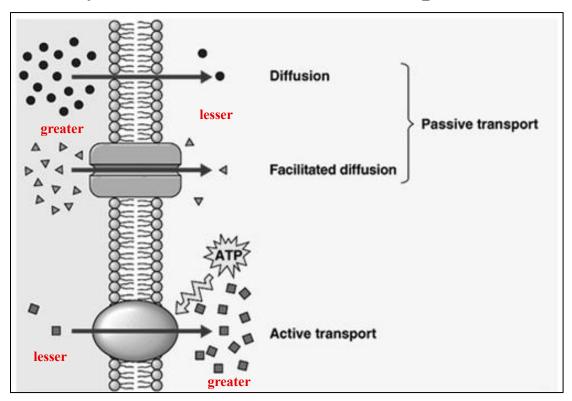
B. Active Transport

• The use of *energy* or <u>ATP</u> to <u>move</u> molecules from a <u>lesser</u> concentration to a <u>greater</u> concentration.

Active transport is like rolling a ball ___uphill

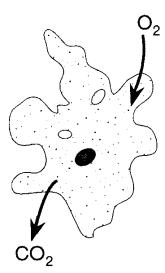


It requires no energy or ATP to roll a ball down a hill. It happens naturally just like diffusion which is a form of passive transport. However, pushing the ball up the hill, against the gradient, requires the input of energy or ATP.



C. Example of Active Transport

• Singled-Celled organisms called <u>paramecium</u> live in freshwater ponds and lakes and maintain <u>homeostasis</u> through the use of a <u>contractile vacuole</u> that <u>pumps</u> water OUT.

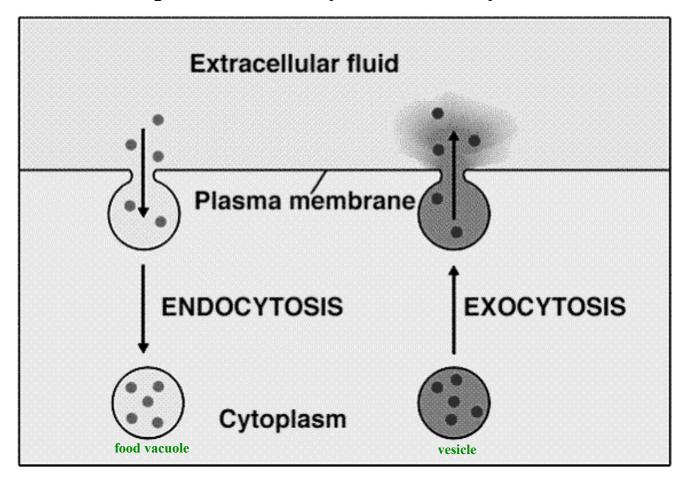

D. Summary of Passive and Active Transport

Factors that affect movement of materials into and out of cells.

- (a) membrane permeability will the cell membrane allow it
- (b) concentration gradient difference in concentration
- (c) size of the molecule

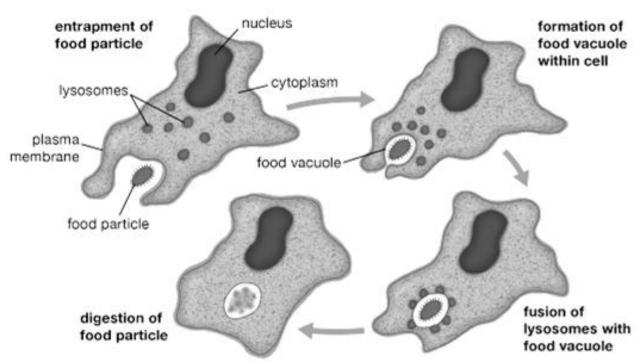
Smaller molecules diffuse easier and faster than larger ones.

III. How to get BIG stuff in and out of cells?


A. Exocytosis - the movement of materials OUT of a CELL This stuff (usually usage) is installed in the stuff (usually usage).

This stuff (*usually waste*) is just too big to diffuse out through the cell membrane.

B. Endocytosis - the movement of materials INTO a CELL


This stuff is just too big to be absorbed in through the cell membrane.

Comparison of Endocytosis and Exocytosis

- **1.** There are 2 kinds of endocytosis:
 - the absorption of small molecules still too big to diffuse through the cell membrane.
 - PHAGOCYTOSIS = the ingestion a larger materials into a cell the absorption of molecules much *TOO BIG* to diffuse through the cell membrane.

(Video) Diagram of Phagocytosis

2. Examples of Phagocytosis.

- (a) Single-celled organisms called <u>ameba</u> use **phagocytosis** to ingest food. They accomplish this task through the use of "false feet" called <u>pseudopods</u>
- (b) White Blood Cells called ______ use phagocytosis to ingest bacteria and other foreign invaders in an effort to keep your body clean and healthy.